Repeated breath profiling by eNoses identifies asthma exacerbations and airway eosinophilia

N. Fens1, M.A. van de Pol1, P. Brinkman1, M.G. Gerritsen1, L.D.J. Bos3, T. Dekker2, B.S. Smids2, C.J. Majoor1, M.M.S. Sneeboer1, R. Lutter1,2, P.J. Sterk1

1Respiratory Medicine; 2Experimental Immunology; 3Intensive Care Medicine, Academic Medical Centre, Amsterdam, The Netherlands

Rationale
- Symptoms and lung function are only moderately related to airway inflammation.
- Asthma exacerbations / loss of control are likely due to increased airway inflammation as induced by virus infections or other environmental exposures.
- Sputum inflammatory markers in asthma and COPD are related to exhaled molecular profiles (breathprints) obtained by eNose and GC-MS (Ibrahim et al Thorax 2011, Fens et al ERJ 2011).

Hypothesis: Breathprints obtained by an eNose platform are associated with exacerbations / loss of asthma control after inhaled steroid withdrawal.

Aim
To assess the relationship between profiles of exhaled biomarkers (eNose platform breathprints) and exacerbations / loss of asthma control after inhaled steroid withdrawal.

Methods
Subjects: Moderate-severe asthma
- 23 asthmatics based on GINA-criteria.
- (partly) Controlled asthma.
- At least 1 exacerbation in the past 2 years.
- At least 500 mcg fluticasone daily or equivalent.
- Non-smoker or ex-smoker (<5 PY).

Design: Longitudinal study with complete stop of ICS at T1

<table>
<thead>
<tr>
<th>Screening</th>
<th>Baseline</th>
<th>Exhaled breath</th>
<th>Loss of control</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T3</td>
</tr>
<tr>
<td>2 weeks</td>
<td>0-8 weeks</td>
<td>4 weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss of control / exacerbation defined as:
1. 2 out of 3 on 2 consecutive days
2. Awakening due to asthma
3. ≥8 puffs short-acting beta-agonist

Measurements:
- Spirometry, sputum induction, FeNO, ACQ
- eNose measurement:
 - Expiratory vital capacity volume collected by standardized method in Tedlar bag, transferred to Tenax tubes (Fens, AJRCM 2009).
 - Breathprints obtained by eNose platform: 158 sensors based on quartz microbalance, polymers, metal oxide, IMS (Wagener, PATS 2013).

Statistical analysis (SPSS):
- Sensor values were normalized, followed by principal component (PC) analysis.
- PC with Eigenvalue >1 were analysed by mixed models followed by post-hoc paired t-tests.

Results

Table 1. Patient characteristics at all timepoints

<table>
<thead>
<tr>
<th>Asthma (n=23)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)*</td>
<td>28 (19-50)</td>
<td>29 (21-3.9)</td>
<td>0.5 (0-2.1)</td>
</tr>
<tr>
<td>Gender M/F</td>
<td>6/17</td>
<td>5/15</td>
<td>102 (14)</td>
</tr>
<tr>
<td>Atopy Y/N</td>
<td>21/2</td>
<td>102 (12)</td>
<td>108 (14)</td>
</tr>
<tr>
<td>LABA Y/N</td>
<td>17/6</td>
<td>102 (12)</td>
<td>108 (14)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.0 (4.3)</td>
<td>16.5 (5-147.5)</td>
<td>17.5 (7-95)</td>
</tr>
<tr>
<td>ACo*</td>
<td>1.0 (0-3.0)</td>
<td>2.9 (21-3.9)</td>
<td>0.5 (0-2.1)</td>
</tr>
<tr>
<td>Pre-FEV, (% predicted)*</td>
<td>101 (12)</td>
<td>89 (15)</td>
<td>102 (14)</td>
</tr>
<tr>
<td>Post-FEV, (% predicted)*</td>
<td>107 (12)</td>
<td>102 (12)</td>
<td>108 (14)</td>
</tr>
<tr>
<td>FeNO (ppb)*</td>
<td>16.5 (5-147.5)</td>
<td>32.5 (7.15-75)</td>
<td>17.5 (7-95)</td>
</tr>
<tr>
<td>PC20*</td>
<td>1.96 (0.03-6.93)</td>
<td>0.4 (0.01-12)</td>
<td>3.5 (0.41)</td>
</tr>
</tbody>
</table>

* Median (range) † Mean (Standard Deviation)

Conclusions
- Using breathprints obtained by an eNose platform it is possible to discriminate between stable periods and periods with (induced) loss of control / exacerbation in asthma.
- At recovery, breathprints returned to baseline values.
- eNose platform breathprints show a correlation with sputum eosinophils.

Implications
eNose platform breathprints may be used for monitoring asthma control.

Figure 3 eNose breathprints PC8 at T1 vs T2, T1 vs T3

N. Fens@amc.nl sponsored by an unrestricted grant from Chiesi Pharmaceuticals

References
- Ibrahim et al Thorax 2011
- Fens et al ERJ 2011
- Sputum inflammatory markers in asthma and COPD are related to airway inflammation as induced by virus infections or other environmental exposures.
- Mixed model analysis showed significant changes in PC8 (fig. 3) and PC9, FeNO and sputum eosinophils comparing all three timepoints.
- Post-hoc paired t-tests showed that significant changes were explained by differences between T1 and T2.
- PC8 showed a strong correlation with sputum eosinophils at T1 but not at T2 and T3 (p<0.008; R<0.60; see fig. 4).